Как оценивается свариваемость по эквиваленту углерода. Чугуны: роль углерода и кремния. Технические условия изготовления изделия

04.05.2024

Свариваемость



Свариваемость стали:

Сталь конструкционной марки 30Г

Рис. 11. Форма проплавления

Рис. 12. Структурные составляющие

Рис. 15. Трещиностойкость

Вывод

Рассмотрев три расчета на свариваемость стали 30Г,работающей в одинаковых условиях после каждого способа сварки. Можно сделать вывод, что наилучший способ сварки для данной стали,является сварка в среде защитных газов(СО 2)с послесварочным нагревом 400 0 C в течении 2 часов.При этой сварке мы получаем наилучшую структуру металла шва, сварочное напряжение, и наименьшую вероятность образования трещин.

Заключение

В данном курсовом проекте был рассмотрен косвенный метод оценки свариваемости металла через программу “Свариваемость легированных сталей”. А так же сделан вывод, что для стали 30Г наиболее лучшим способом сварки является сварка в среде защитных газов (СО 2).

Список литературы, использованной при выполнении

Курсового проекта

1. Теория сварочных процессов: Учебник для вузов по специальности «Оборудование и технология сварочного производства» / В.Н. Волченко, В.М. Ямпольский, В.А. Винокуров и др.; Под редакцией В.В. Фролова. М.: Высшая школа, 1988. 559с.

2. Сварка в машиностроении: Справочник. В 4-х томах. / Редкол.: Г.А. Николаев (пред.) и др. М: Машиностроение, 1978-79.

3. Марочник сталей и сплавов / /В.Г. Сорокин, А.В. Волосникова, С.А. Вяткин и др.; Под общей редакцией Б.Г. Сорокина. М.: Машиностроение, 1989. 640 с.

Свариваемость

Свариваемостью называется свойство или сочетание свойств металлов образовывать при установленной технологии сварки неразъёмное соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделия.

Различают физическую и технологическую свариваемость.

Физическая свариваемость – свойство материалов давать монолитное соединение с химической связью. Такой свариваемостью обладают практически все технические сплавы и чистые металлы, а также ряд сочетаний металлов с неметаллами.

Технологическая свариваемость – технологическая характеристика металла, определяющая его реакцию на воздействие сварки и способность при этом образовывать сварное соединение с заданными эксплуатационными свойствами.

Свариваемость металла зависит от его химических и физических свойств, кристаллической решётки, степени легирования, наличия примесей и других факторов.

Назовём основные показатели свариваемости металлов и их сплавов:

Окисляемость при сварочном нагреве, зависящая от химической активности металла;

Чувствительность к тепловому воздействию сварки, которая характеризуется склонностью металла к росту зерна, структурным и фазовым изменениям в шве и зоне термического влияния, изменениям прочностных и пластических свойств;

Сопротивляемость образованию горячих трещин;

Сопротивляемость образованию холодных трещин при сварке;

Чувствительность к образованию пор;

Соответствие свойств сварного соединения заданным эксплуатационным требованиям.

Кроме перечисленных основных показателей свариваемости имеются ещё показатели, от которых зависит качество сварных соединений. К ним относят качество формирования сварного шва, величину собственных напряжений, величину деформаций и коробления свариваемых материалов и изделий.

Окисляемость металла при сварке определяется химическими свойствами свариваемого материала. Чем химически активнее металл, тем больше его склонность к окислению и тем выше должно быть качество защиты при сварке. Это особенно наглядно видно на примере железоуглеродистых сплавов. Как известно, сталь в основном состоит из железа с неизменной примесью углерода.

Свариваемость стали принято оценивать по следующим показателям:

Склонности металла шва к образованию горячих и холодных трещин;

Склонности к изменению структуры в околошовной зоне и к образованию закалочных структур;

Физико-механическим качествам сварочного соединения;

Соответствию специальных свойств сварного соединения техническим условиям.

Технология сварки (вид сварки, сварочные материалы, техника сварки) выбирается в зависимости от основного показателя свариваемости (или сочетаний нескольких показателей) для каждого конкретного материала.

По содержанию углерода стали разделяются на: низкоуглеродистые (до 0,25% С); среднеуглеродистые (0,25-0,4% С); высокоуглеродистые (0,46-0,9% С). Хорошо свариваются низкоуглеродистые стали, широко применяемые для строительных конструкций. Сварка среднеуглеродистых сталей возможна при условии соблюдения особой технологии, включающей, как правило, предварительный подогрев и последующую термообработку, устраняющие закалку соединения.. Ручная дуговая сварка высокоуглеродистых сталей не рекомендуется. Она возможна только при соблюдении технологии, которая, однако, не всегда обеспечивает получение соединения, равнопрочного основному металлу.

Кроме углерода в стали и шве содержатся Mn и Si, попадающие в металл в процессе раскисления. Для повышения прочностных характеристик и приобретения особых свойств стали (коррозионной стойкости, жаропрочности и т.п.) применяют легирование металла различными полезными элементами, которые, улучшая его свойства, вместе с тем ухудшают его свариваемость. Легированные стали разделяются в зависимости от содержания легирующих элементов на: низколегированные (не более 2,5%); легированные (2,5-10%) и высоколегированные (более 10%). Свариваемость стали можно приближенно определить по количеству легирующих элементов, эквивалентных (приравненных) углероду, по формуле:

Cэ = C+Mn/6+Si/24+Cr/5+Ni/10+Mo/4+V/5+Cu/13+P/2 ,

где Сэ – эквивалент углерода, %;

C, Mn, Si и др. – содержание в стали этих элементов, %.

Свариваемость стали 30Г - ЭтоСталь конструкционная легированная . Такой вид стали применяют для улучшаемых деталей, к которой предъявляются требования невысокой прочности: тяги, оси, цилиндры, диски, болты, гайки, винты и другие. Конструкционные лигированые стали типа 30Г поставляют в виде сортового проката по ГОСТ 4543-71, ГОСТ 2591-88, ГОСТ 2879-88. В начале марки указывается двухзначное число, показывающее содержание углерода в сотых долях процента. Далее перечисляются легирующие элементы. Число, следующее за условным обозначение элемента, показывает его содержание в процентах. Если число не стоит, то содержание элемента не превышает 1,5 %. Для обозначения высококачественных легированных сталей в конце марки указывается символ А. Например, сталь 30Г (0,30 %). Она обладает высокой прочностью (σ в = 640…780 МПа, σ 0,2 = 440…540 МПа) и относительно низкой пластичностью (δ = 6…20 %, ψ = 45 %). Может применяться при температуре -80 о С (Толщина стенки не более 100 мм).

Сталь 30Г сваривается ограниченно. Способы сварки РДС, АДС под флюсом и газовой защитой, ЭШС. Рекомендуем подогрев и последующую термообработку. КТС без ограничений.

Свариваемость стали:

Сталь конструкционной марки 30Г сваривается ограниченно. С увеличением углерода в стали зона термического влияния и шов закаливаются, увеличивается твердость, сварные соединения становятся более хрупкими и склонными к образованию трещин.

Удовлетворительные стали имеют содержание углерода от 0,25 до 0,35%. Они мало склонны к образованию трещин и при правильных режимах сварки получается качественный шов. Для улучшения качества сварки часто применяют подогрев.

Способы расчета свариваемости

Понятия об углеродном эквиваленте и степени эвтектичности. Классификация литейных чугунов. Параметры структуры и свойств.

Москва-2009

Основы технологии производства чугунных отливок

Лекции

Раздел 3

Проф. Э. Б. Тен


Чугуны являются наиболее распространенным материа­лом для изготовления фасонных отливок, прежде всего машиностроительного назначения. Это обусловлено сочетанием хороших функциональных и технологи­ческих свойств с низкой себестоимости их получения. Область применения чугуна продолжает расширяться вследствие непрерывного повышения его качества по показателям прочности и эксплуата­ционных свойств, совершествания составов и технологии получения.

Чугуны отличаются от стали тем, что при кристаллизации претерпевают эвтектическое превращение. При этом промышленные чугуны представляют собой многокомпонентные сплавы на основе железа и углерода, дополнительно содержащие постоянные и легирующие компоненты, а также примеси и газы. Железо и углерод образуют основу чугуна, поэтому являются базовыми компонентами. Постоянными компонентами чугуна являются кремний (до 4 %) и марганец (до 1 %). К легирующим компонентам относятся никель, медь, хром, молибден, ванадий и др., а также кремний и марганец сверх обычного содержания. Их вводят в чугун для улучшения параметров структуры и свойств, в том числе придания им специальных свойств. В чугуне также всегда присутствуют фосфор и сера как примеси, а также газы – водород, кислород и азот. Все компоненты, содержащиеся в промышленных чугунах, в той или иной степени сдвигают критическиие точки (вверх или вниз, вправо или влево) относительно их положения в двойной диаграмме состояния Fe-C(Fe 3 C). Поэтому положение состава промышленного чугуна на диаграмме состояния (Рис. 3.1.1), как правило, не совпадает с содежанием в нем углерода. Для оценки этого отличия используют понятия углеродного эквивалента C Э и степени эвтектичности S Э.

Рис. 3.1.1 Диаграмма состояния Fe-C (Fe 3 C).

Углеродный эквивалент C Э представляет собой показатель кажущегося содержания углерода в чугуне:

C Э = C + 0,30 Si + 0,33 P + 0,40 S + 0,25 Cu + 0,07 Ni - 0,03 (0,04) Mn (3.1.1)

Из уравнения (3.3.1) следует, что 1 % кремния, фосфора, серы, меди и никеля смещают точку эвтектики влево эквивалентно 0,30, 0,33, 0,40, 0,25 и 0,07 % углерода, а 1 % марганца, наоборот, смещает эвектическую точку вправо эквивалентно 0,03-0,04 % углерода.

Степень эвтектичности S Э представляет собой показатель положения чугуна данного состава относительно эвтектического состава:

S Э = C / (3.1.2)



По значению S Э можно оценить степень отклонения чугуна данного состава от эвтектического состава, для которого S Э = 1.

Например, чугун, который содержит 3,30 %С, 2,00 %Si, 0,10 % P, 0,07 %S, 0,03 %Cu, 0,02 %Ni и 0,70 %Mn имеет углеродный эквивалент

C Э = 3,30 + 0,30∙2,00 + 0,33∙0,10 + 0,40∙0,07 + 0,25∙0,03 + 0,07∙0,02 - 0,03∙0,70 = 4,20 %.

При этом степень эвтектичности его равна:

S Э = 3,30 / =

3,30 / = 3,30 / 3,36 = 0,98.

Это означает, что промышленный чугун с фактическим содержанием углерода 3,3 % при формировании структуры будет вести себя как Fe-C сплав с содержанием углерода 4,20 %, т. е будет иметь структуру эвтектического чугуна, поскольку степень эвтектичности его равна 0,98.

Параметры C Э иS Э позволяют пользоваться двойной диаграммой состояния Fe-C (Fe 3 C) для оценки процессов, протекающих при кристаллизации многокомпонентного чугуна.

ЭКВИВАЛЕНТ УГЛЕРОДА

При дуговой сварке углеродистых и низколегированных сталей затвердение зоны термического влияния (HAZ) основного металла обычно вызывается трансформацией аустенита в мартенсит, что происходит в результате быстрого остывания сварочного металла. Степень затвердения зависит от состава сплава и скорости остывания. Для углеродистых и низколегированных сталей влияние состава определяется с помощью установленного опытным путем эквивалента углерода (Ceq). Для определения Ceq, как правило, используется следующая формула, принятая Международным институтом сварки.

В Японии для оценки степени затвердеваемости углеродистых и низколегированных сталей обычно используется такая формула:

В этих формулах C и другие элементы сплава представлены в процентах по массе.

Как показано на Иллюстрации 1, максимальная твердость HAZ повышается по мере повышения Ceq, что подтверждает сильное и прямое воздействие углерода на твердость. Другие элементы сплава также влияют на твердость, но в меньшей степени. В целом, они влияют на способность сварных швов к затвердеванию.

Как показано на иллюстрации, максимальная твердость HAZ углеродистых или низколегированных сталей может быть определена по формуле Hmax = (666Ceq + 40) ± 40. Однако основное приложение данная концепции находит для определения не твердости, а минимальной температуры предварительного подогрева, необходимой для того, чтобы избежать формирования твердого мартенсита или микроструктуры с низкой пластичностью.

Такая микроструктура, наряду со сжатием сварочного шва и содержанием углерода в сварочном металле, может вызвать холодное растрескивание сварного шва. Как показано на Иллюстрации 2, образование подшовных трещин – холодных трещин, образующихся в HAZ, увеличивается по мере увеличения показателя Ceq.

По указанным выше причинам показатель Ceq iявлется индикатором, который может помочь определить степень затвердеваемости или свариваемости основного металла. Чем выше показатель Ceq, тем выше твердость и выше температура предварительного подогрева. Именно поэтому показатель Ceq может включаться в характеристики материалов и строительные нормативы для сварных конструкций, в качестве рекомендованного или обязательного норматива при выборе стали и ведении сварочных процедур.

» Источники «

Х.Судзуки и Х.Тамура. Металлургия сварки. Полный справочник сварки – Серия 1, Издательство Sanpo Publications Inc.
  С.Ямамото Основы дуговой сварки и Инспекции. Издательство Shinko Welding Service Co., Ltd.


Аустенита и соответственно понижающих температуру начала мартенситного превращения стали. Наиболее часто для определения углеродного эквивалента (Сэ) используется Международного инварианта сварки:
C э = C + Mn/6 + ( + Mo + V)/5 + ( + Ni)/15,
где C, Cr, Мо, V, Cu, Ni - массовые доли элементов в стали.
2. Показатель положения состава чугуна по отношению к эвтектической точке, характеризующий его графитизации, структуру и , - углеродный определяется по уравнению:
C э = C + 0,3(Si + Р),
где C, Р - масовые доли элементов в чугуне. При C э чугун является доэвтектическим, при C э = 4,26 - эвтектическим, при C э > 4,26 - заэвтектическим;
Смотри также:
-
-
-
-
-
-
-
-

Энциклопедический словарь по металлургии. - М.: Интермет Инжиниринг . Главный редактор Н.П. Лякишев . 2000 .

Смотреть что такое "углеродный эквивалент" в других словарях:

    углеродный эквивалент - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN carbon equivalent valuecarbon equivalentCE …

    Углеродный эквивалент - – условная величина содержания углерода, получаемая из набора основных химических элементов арматурной стали. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г. 110 стр.] … Энциклопедия терминов, определений и пояснений строительных материалов

    Cэ величина, характеризующая влияние важнейших элементов на структуру и свойства серого чугуна; определяется по формуле Cэ=Cэ+0,3(Si Р). Углеродный эквивалент алюминеев чугунов равен: Cэ=C+0,25Si+0,15Al. При Cэ4,26 заэвтектическим. Углеродный… …

    УГЛЕРОДНЫЙ ЭКВИВАЛЕНТ С э - величина, характеризующая влияние важнейших элементов на структуру и свойства серого чугуна; определяется по формуле Cэ=Cэ+0,3(Si P). Углеродный эквивалент алюминиевых чугунов равен: Cэ=C+0,25Si+0,15Al. При Сэ<4,26 чугун является… … Металлургический словарь

    углеродный эквивалент топлива - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN carbon equivalent valueCEV … Справочник технического переводчика

    Множитель, учитывающий влияние элементов, способствующих превращению (ферритизации) или препятствующих этому превращению (аустенизации) в Cr Ni сталях. К аустенитообразующим элементам, т. е. действующим аналогично Ni, относятся С, N, Mn; к… … Энциклопедический словарь по металлургии

    Предмет или количество, равноценные, равнозначные или соответствующие в каком либо отношении другим и могущие служить или выражением, или заменой: Смотри также: Эквивалент никеля и хрома электрохимический эквивалент хромовый… … Энциклопедический словарь по металлургии

    Количество работы, эквивалентное единице количества теплоты, переданной при теплообмене. Понятие механический эквивалент теплоты возникло в связи с тем, что исторически механическую работу и количество теплоты… … Энциклопедический словарь по металлургии

    Его масса (выраженная в углеродных единицах), которая присоединяет или замещает одну атомную масса водорода или половину атомной массы кислорода. В реакциях окисления восстановления химический эквивалент… … Энциклопедический словарь по металлургии

    Количество вещества, подвергаемое химическому превращению на электродах в результате прохождения через электролит 1 кулона электричества. Выражается обычно в г/Кл. Электрохимический эквивалент связан с химическим… … Энциклопедический словарь по металлургии