Презентация на тему "лазеры и их применение". Презентация на тему "применение лазеров" Презентация по физике на тему лазеры

19.01.2024

Cлайд 1

Cлайд 2

Лазер как физический прибор. Лазер (оптический квантовый генератор) (аббревиатура слов английской фразы: Light Amplification by Stimulated Emission of Radiation - усиление света в результате вынужденного излучения), источник оптического когерентного излучения, характеризующегося высокой направленностью и большой плотностью энергии. Существуют газовые лазеры, жидкостные и твердотельные (на диэлектрических кристаллах, стеклах, полупроводниках). В лазере происходит преобразование различных видов энергии в энергию лазерного излучения. Существуют лазеры непрерывного и импульсного действия Лазеры получили широкое применение в научных исследованиях (в физике, химии, биологии и др.), в практической медицине (хирургия, офтальмология и др.), а также в технике (лазерная технология). Лазеры позволили осуществить оптическую связь и локацию, они перспективны для осуществления управляемого термоядерного синтеза.

Cлайд 3

Спонтанное и вынужденное излучение. 1917 г. А. Эйнштейн: Механизмы испускания света веществом Спонтанное (некогерентное) Вынужденное (когерентное)

Cлайд 4

Лазеры А.М. Прохоров Н.Г. Басов Ч. Таунс В 1954 г. Впервые создали генераторы электромагнитного излучения, использующие механизм вынужденного перехода. Т. Мейман В 1960 г. создал лазер в оптическом диапазоне работающий на рубине.

Cлайд 5

Cлайд 6

Cлайд 7

Виды лазеров Газовые гелий-неоновый аргоновый криптоновый ксеноновый азотный втористо-водородный кислородно-йодный углекислотный (CO2) на монооксиде углерода (CO) эксимерный На парах металлов -гелий-кадмиевый -гелий-ртутный -гелий-селеновый -на парах меди -на парах золота Твердотельные -рубиновый -алюмо-иттриевые -на фториде иттрия-лития -на ванадате иттрия -на неодимовом стекле -титан-сапфировые -александритовый -оптоволоконный -на фториде кальция Другие типы -полупроводниковый лазерный диод -на красителях -на свободных электронах -псевдо-никелево-самариевый

Cлайд 8

РУБИНОВЫЙ ЛАЗЕР Первый квантовый генератор света был создан в 1961 году Мейманом (р.1927) на рубине. Рубин - это твёрдый кристалл, основой которого является корунд, т.е. кристалл окиси алюминия (Al2O3), в котором небольшая часть атомов алюминия (около 0,05%) замещена ионами хрома Cr+++. Для создания инверсной заселённости используется оптическая накачка, т.е. освещение кристалла рубина мощной вспышкой света. Рубину придают форму цилиндрического стержня, концы которого тщательно отполированы, посеребрены, и служат зеркалами для лазера. Для освещения рубинового стержня применяют импульсные ксеноновые газоразрядные лампы-вспышки, через которые разряжаются батареи высоковольтных конденсаторов. Лампа-вспышка имеет форму спиральной трубки, обвивающейся вокруг рубинового стержня. Под действием мощного импульса света в рубиновом стержне создаётся инверсная заселённость и благодаря наличию зеркал возбуждается лазерная генерация, длительность которой чуть меньше длительности вспышки накачивающей лампы.

Cлайд 9

Cлайд 10

Гелий-неоновый лазер. Ге лий-нео новый ла зер - лазер, активной средой которого является смесь гелия и неона. Гелий-неоновые лазеры часто используются в лабораторных опытах и оптике. Имеет рабочую длину волны 632,8 нм, расположенную в красной части видимого спектра. Гелий-неоновый лазер. Светящийся луч в центре - это не собственно лазерный луч, а электрический разряд, порождающий свечение, подобно тому, как это происходит в неоновых лампах. Луч проецируется на экран справа в виде светящейся красной точки.

Cлайд 11

Все лазеры состоят из трёх основных частей: - активной (рабочей) среды; - системы накачки (источник энергии); - оптического резонатора (может отсутствовать, если лазер работает в режиме усилителя). Каждая из них обеспечивает для работы лазера выполнение своих определённых функций. Рабочим телом гелий-неонового лазера служит смесь гелия и неона в пропорции 5:1, находящаяся в стеклянной колбе под низким давлением (обычно около 300 Па). Энергия накачки подаётся от двух электрических разрядников с напряжением около 1000 вольт, расположенных в торцах колбы. Резонатор такого лазера обычно состоит из двух зеркал - полностью непрозрачного с одной стороны колбы и второго, пропускающего через себя около 1 % падающего излучения на выходной стороне устройства. Гелий-неоновые лазеры компактны, типичный размер резонатора - от 15 см до 0,5 м, их выходная мощность варьируется от 1 до 100 мВт.

Cлайд 12

Применение лазеров Наука Вооружение Медицина Промышленность и быт Спектроскопия Измерение расстояний Фотохимия Намагничивание Интерферометрия Голография Охлаждение Термоядерный синтез Лазерное оружие «Звездные войны» Целеуказатели Лазерный прицел Лазерное наведение Скальпель Точечная сварка тканей Хирургия Диагностика Удаление опухолей Резка, сварка, маркировка, гравировка CD, DVD-проигрыватели, принтеры, дисплеи Фотолитография, считыватель штрихкода Оптическая связь, системы навигации (л.гироскоп) Манипуляции микрообъектами

Cлайд 13

Cлайд 14

Cлайд 15

Лазерное сопровождение музыкальных представлений (лазерное шоу) -Твердотельные и жидкостные лазеры.

Cлайд 16

Полупроводниковый лазер, применяемый в узле генерации изображения принтера Hewlett-Packard

Cлайд 17

Cлайд 18

В настоящее время трудно представить прогресс в медицине без лазерных технологий, которые открыли новые возможности в разрешении многочисленных медицинских проблем. Изучение механизмов воздействия лазерного излучения различных длин волн и уровней энергии на биологические ткани позволяет создавать лазерные медицинские многофункциональные приборы, диапазон применения которых в клинической практике стал настолько широким, что очень трудно ответить на вопрос: для лечения каких заболеваний лазеры не применяют? Развитие лазерной медицины идет по трем основным ветвям: лазерная хирургия, лазерная терапия и лазерная диагностика. Нашей областью деятельности являются лазеры для применений в хирургии и косметологии, имеющие достаточно большую мощность для разрезания, вапоризации, коагуляции и других структурных изменений в биоткани. Использование лазеров в медицине.

Лазеры

Слайдов: 32 Слов: 1496 Звуков: 0 Эффектов: 8

Светодиоды и полупроводниковые лазеры. Содержание. Светодиоды П/п лазеры П/п лазеры на фотонных кристаллах. Последние имеют два электронно-дырочных перехода. Светодиоды чаще всего используют как индикаторные устройства. На практике наибольший интерес представляет GaAs(1-x)Px. Светодиоды. Light-Emitting Diode (LED). В прямозонных материалах процесс излучательной рекомбинации является доминирующим. Азот, внедрённый в полупроводник, замещает атомы фосфора в узлах решётки. Полученный таким образом рекомбинационный центр называется изоэлектронным центром. В нормальном состоянии изоэлектронные центры нейтральны. - Лазеры.ppt

Виды лазеров

Слайдов: 13 Слов: 1216 Звуков: 0 Эффектов: 8

Лазер. Источник электромагнитного излучения. Свойства лазерного излучения. Усилители и генераторы. Классификация лазеров. Газовый лазер. Твердотельные лазеры. Жидкостный лазер. Полупроводниковый лазер. Химический лазер. Ультрафиолетовый лазер. Применение лазера. - Виды лазеров.ppt

Типы лазеров

Слайдов: 22 Слов: 1300 Звуков: 0 Эффектов: 0

Трехуровневая схема оптической накачки. Указаны «времена жизни» уровней E2 и E3. Уровень E2 – метастабильный. Переход между уровнями E3 и E2 безызлучательный. Лазерный переход осуществляется между уровнями E2 и E1. В кристалле рубина уровни E1, E2 и E3 принадлежат примесным атомам хрома. Первый лазер на рубине, созданный в ФИАНе М.Д.Галаниным, А.М.Леонтовичем, З.А.Чижиковой, 1960 год. Схема устройства на примере рубинового лазера. Лазер обычно состоит из трёх основных элементов: Источник энергии (механизм «накачки»); Рабочее тело; Система зеркал («оптический резонатор»). Гелий-неоновый лазер. - Типы лазеров.ppt

Лазеры физика

Слайдов: 22 Слов: 519 Звуков: 0 Эффектов: 11

Лазеры. Содержание. Макс Планк. Нильс Бор. При переходе атома с уровня энергии на уровень, излучается фотон. Альберт Эйнштейн. Принцип работы лазеров. Лазеры создают когерентное излучение очень большой мощности. Рубиновый лазер. Кристалл рубина (с примесью хрома – 0,05%) позволяет реализовать состояние инверсии. Виды лазеров. Газовый лазер. Трубка газового лазера во время работы светится, как газосветная реклама. Газодинамический лазер. Полупроводниковый лазер. В полупроводниковом лазере излучает слой между двумя полупроводниками P-и n-типа. Весь лазер вместе с электрическими контактами получается чуть больше пуговицы. - Лазеры физика.ppt

Физика лазеров

Слайдов: 51 Слов: 592 Звуков: 0 Эффектов: 0

Лазер. Один из основных приборов квантовой электроники. Лазер в научной лаборатории. Принцип действия лазера. Лазерное излучение. В фокусе лазерного пучка образуется сгусток плазмы - искра. Установка для нагревания плазмы с помощью мощного лазера. Источник когерентного света. Давление света. Схема разделения газов при помощи резонансного светового давления. Возбуждение генерации; а- в трехуровневой системе; б- в четырехуровневой системе. Усиление световой волны в активной среде. Активная среда в оптическом резонаторе. Спектр, линия активной среды и моды оптического резонатора. Рубиновый лазер. - Физика лазеров.ppt

Работа лазера

Слайдов: 38 Слов: 712 Звуков: 1 Эффектов: 44

Лазеры. День весеннего равноденствия. Формула Планка. Модель. Кто изображен на портрете. Расскажите, что вам известно об опыте, изображенном на рисунке. Траектории. Размер атома. Противоречия. Легендарный ученый. Постулаты Бора. Частота фотона. Какое из утверждений является верным. Что изображено на рисунках. Поглощение света атомом. Устройство и принцип действия лазера. Индуцированное излучение. Усиление света. Эйнштейн Альберт. Принцип действия. Изобретатели лазера. Трехуровневая схема оптической накачки. Рубиновый лазер. Свойства лазерного излучения. Применение лазеров. Типы лазеров. - Работа лазера.pptx

Действие лазера

Слайдов: 26 Слов: 554 Звуков: 0 Эффектов: 27

Тема урока. «Лазеры». Цели урока. План. «Усиление света при помощи индуцированного излучения». “Light Amplification by Stimulated Emission of Radiation”. Индуцированное (вынужденное) излучение. В 1916 г Эйнштейн высказал идею о существовании эффекта вынужденного излучения. Н.Г.Басов. А.М.Прохоров. Ч. Таунс. 1916 – 1960 г - «Золотой век» создания чудесного луча. Первый лазер на рубине. Жорес алфёров – лауреат нобелевской премии в области физики за 2000 год. Свойства лазерного излучения. Когерентность Малый угол расхождения Монохроматичность Большая мощность. Принцип действия лазера. - Действие лазера.ppt

Принцип работы лазера

Слайдов: 28 Слов: 1402 Звуков: 0 Эффектов: 3

Принцип работы лазера и основные свойства лазерного излучения. Основные резонансные фотопроцессы. Свойства вынужденного излучения. Принцип работы лазера. Рабочий переход в лазерной активной среде. Схемы накачки активной среды. Условие лазерного усиления. Развитие процесса генерации в лазере. Оптический резонатор. Пичковый режим работы лазера. Временные зависимости. Основные свойства лазерного излучения. Параметры мощных лазерных установок. Петаваттный лазер в Техасском университете. Типы лазеров. Первый лазер на рубине. Схема рубинового лазера. Устройство и принцип работы гелий-неонового лазера. - Принцип работы лазера.ppt

«Лазеры» физика 11 класс

Слайдов: 22 Слов: 783 Звуков: 0 Эффектов: 6

Полупроводниковые лазеры

Слайдов: 12 Слов: 576 Звуков: 0 Эффектов: 0

Полупроводниковые лазеры. Полупроводниковый лазер -. полупроводниковый квантовый генератор, лазер с полупроводниковым кристаллом в качестве рабочего вещества. В П. л. возбуждаются и излучают (коллективно) атомы, слагающие кристаллическую решётку. Важные особенности п.л. Историческая справка: Люминесценция в полупроводниках (а) Инверсия населённостей в полупроводниках (б). Методы накачки в п.л. Наибольшее развитие получили П. л. первых двух типов. Инжекционные лазеры. П.л. с электронной накачкой. Полупроводниковые лазерные материалы: Применение п.л. - Полупроводниковые лазеры.ppt

Применение лазеров

Слайдов: 22 Слов: 882 Звуков: 0 Эффектов: 0

Лазеры. Историческая справка. Н.Г.Басков и А.М.Прохоров и Ч.Таунс были удостоены Нобелевской премии. Новый генератор назвали «лазер». Принцип действия лазера. В обычных условиях атомы находятся в низшем энергетиче-ском состоянии. Свойства лазерного излучения. Лазеры являются самыми мощными источниками света: сотни и тысячи ватт. Мощность излучения Солнца - 7·103Вт, а у некоторых лазеров – 1014Вт. Виды лазеров. В веществе стержня, возбужден- ном световой вспышкой, возникает лавина фотонов. Неон светится красным светом, криптон – желтым, аргон – синим. Газо-динамический лазер Похож на реактивный двигатель. - Применение лазеров.ppt

Лазеры и их применение

Слайдов: 22 Слов: 1445 Звуков: 0 Эффектов: 0

Лазеры и их применение. Что такое лазер. Свойства лазерного света. Применение лазеров. Применение лазеров в медицине. Применение лазеров в стоматологии. Лазеры. Лазерные системы в деревообработке. Лазеры в вычислительной технике. Лазеры в измерениях. Классификация лазеров. Меры безопасности. Лазерное оружие. Лазерная указка. Лазерная сварка. Лазерный принтер. Использование лазера при обследовании больного. Защитные очки. Лазерное шоу. - Лазеры и их применение.pptx

Виды лазеров и их применение

Слайдов: 16 Слов: 812 Звуков: 0 Эффектов: 1

Лазер. Что такое лазер. Создание лазера. Советские учёные. Устройство лазера. Лазерное излучение. Виды лазеров. Применение лазеров. Сварка. Используют в стоматологии. Турбулентность и инверсионные следы. Лазерные гироскопы. Точность попадания. Лазеры. - Виды лазеров и их применение.pptx

Устройство и применение лазера

Слайдов: 32 Слов: 334 Звуков: 0 Эффектов: 0

Лазер. Усиление света. Устройство лазера. Рабочие тела. Источники энергии. Схема устройства. Ж.И.Алфёров. Резка металла. Лазерная сварка. Применение лазерной резки. Лазерный дальномер. Купол лазерного дальномера. Лазерный целеуказатель. Лазерный дальномер в строительстве. Боевое оружие на основе применения лазера. Лазер на самолетах. Револьвер, оснащённый лазерным целеуказателем. Боевые лазеры космического базирования. Применение лазера в медицине. Применение лазера при заболеваниях глаз. Применение лазера в фотохимии. Лазерные указки. Лазеры для компакт-дисков. Лазерный принтер. -











1 из 10

Презентация на тему: Лазер

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

История создания лазера История изобретения лазера началась с предположения.А именно: в 1916 году Альберт Энштейн создал теорию взаимодействия излучения с веществом, из которой вытекала принципиальная возможность создания квантовых усилителей и генераторов электромагнитных волн, да и Алексей Толстой, в своем знаменитом романе "Гиперболоид инженера Гарина", писал примерно об этом же. Однако первая попытка экспериментально обнаружить индуцированное излучение была только в 1928 году, когда Ланденбург, изучая отрицательную дисперсию света, сформулировал условия обнаружения индуцированного излучения как преобладание его над поглощением (условие инверсии), отметив, что для этого необходимо специальное избирательное возбуждение квантовой системы. До 50-х годов были только предпосылки создания лазера, пока в 1955 году ученые Николай Басов и Александр Прохоров не разработали квантовый генератор - усилитель микроволн с помощью индуцированного излучения, активной средой которого является аммиак.

№ слайда 3

Описание слайда:

История создания лазера Изобретение лазера, использующего аммиак, позволило американским ученым Ч. Таунсу и А. Шавлову через два года начать разработку принципов лазера. Работая параллельно в том же направлении, Александр Прохоров в 1958-м использовал для создания лазера резонатор Фабри-Перо, представляющий собой два параллельных зеркала, одно из которых полупрозрачно. В мае 1960 г. сотрудник исследовательского центра фирмы Hughes, американский физик Теодор Мейман, основываясь на работах Н.Басова, А.Прохорова и Ч.Таунса, сконструировал первый лазер на рубине с длиной волны в 0,69 мкм. Спустя полгода в лабораториях корпорации IBM заработал инфракрасный лазер на фториде кальция с добавкой ионов урана, построенный Питером Сорокиным и Миреком Стивенсоном. Это был уникальный прибор, который действовал лишь при температуре жидкого водорода и практического значения не приобрел. Наконец, в декабре того же года исследователи из Bell Laboratories Али Джаван, Уильям Беннетт и Дональд Хэрриот продемонстрировали первый в мире газовый лазер на смеси гелия и неона, который повсеместно применяется и в наши дни. После этого физики и инженеры всего мира включились в гонку по созданию всевозможных лазеров, которая идет и по сей день.

№ слайда 4

Описание слайда:

Что такое лазер? Лазер (англ. laser, сокр. от Light Amplification by Stimulated Emission of Radiation - «Усиление света с помощью вынужденного излучения») - устройство, использующее квантовомеханический эффект вынужденного (стимулированного) излучения для создания когерентного потока света. Луч лазера может быть непрерывным, с постоянной амплитудой, или импульсным, достигающим экстремально больших пиковых мощностей. Во многих конструкциях рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника. Усиленный сигнал очень точно совпадает с исходным по длине волны, фазе и поляризации, что очень важно в устройствах оптической связи.

№ слайда 5

Описание слайда:

№ слайда 6

Описание слайда:

Первые лазеры Первый работающий лазер был сделан Т. Майманом в 1960 г. в исследовательской лаборатории компании Хьюза, которая находилась в Малибу, штат Калифорния с привлечением групп Таунса из Колумбийского Университета и Шалоу из компании Bell laboratories. Майман использовал рубиновый стержень с импульсной накачкой, который давал красное излучение с длиной волны 694 нанометра. Примерно в то же время иранский физик Али Яван представил газовый лазер. Позднее за свою работу он получил премию имени А. Эйнштейна. Основная идея работы лазера заключается в инверсии электронной населённости путём «накачки» рабочего тела энергией, подводящейся к нему, например, в виде световых или электрических импульсов. Рабочее тело помещается в оптический резонатор, при циркуляции волны в котором её энергия экспоненциально возрастает благодаря механизму вынужденного излучения. При этом энергия накачки должна превышать определённый порог, иначе потери в резонаторе будут превышать усиление и выходная мощность будет крайне мала.

№ слайда 7

Описание слайда:

Принцип работы Гелий-неоновый лазер. Светящийся луч в центре - это не собственно лазерный луч, а электрический разряд, порождающий свечение, подобно тому, как это происходит в неоновых лампах. Луч проецируется на экран справа в виде светящейся красной точки. Инверсия электронной населённости также лежит в основе работы лазеров, которые принципиально похожи на лазеры, но работают в микроволновом диапазоне. Первые мазеры были сделаны в 1953-1954 гг. Н. Г. Басовым и А.М. Прохоровым, а также независимо от них американцем Ч. Таунсом и его сотрудниками. В отличие от квантовых генераторов Басова и Прохорова, которые нашли выход в использовании более чем двух энергетических уровней, мазер Таунса не мог работать в постоянном режиме. В 1964 г. Басов, Прохоров и Таунс получили Нобелевскую премию по физике «За основополагающую работу в области квантовой электроники, позволившую создать генераторы и усилители, основанные на принципе мазера и лазера».

№ слайда 8

Описание слайда:

Свойства лазерного излучения Излучение лазера может быть настолько мощным, что им можно резать сталь и другие металлы. Несмотря на то, что луч лазера можно сфокусировать в очень маленькую точку, она всегда будет иметь конечный ненулевой размер вследствие дифракции. С другой стороны, размер сфокусированного лазерного луча всегда будет значительно меньше луча, созданного любым другим способом. Например, луч небольшого лабораторного гелий-неонового лазера разойдётся всего примерно на 1,5 километра на расстоянии от Земли до Луны. Конечно, некоторые лазеры, особенно полупроводниковые, благодаря малым размерам, создают сильно расходящийся луч. Однако эту проблему можно решить применением линз. Влияние дифракции можно обойти, применяя волноводы, в данном случае оптоволоконные линии.

Описание слайда:

Применение лазера в медицине В области медицины возможности лазеров стали развиваться быстрее после 1964 г., когда был изобретен лазер на диоксиде углерода, который вскоре дал хирургам возможность выполнять очень сложные операции, используя фотоны вместо скальпеля, для проведения операций. Лазерный свет может проникать внутрь тела, выполняя операции, что несколько лет назад было почти невозможно выполнить, при минимальном риске или дискомфорте для пациента. В области стоматологии, вдобавок к хирургии рта, Голдман и другие в 1964 г. предположили возможность применения рубинового лазера для лечения кариеса, что привлекло внимание всего мира. В 1967 г. Гордон попытался удалить кариес и подготовить полость при помощи рубинового лазера, но не смог избежать повреждения пульпы зуба, несмотря на хорошие результаты, полученные на извлеченных зубах. С сегодняшними лазерами практически нет нежелательного нагревания, нет шума и вибрации. Покидая стоматологическое кресло, большинство пациентов не ощущали боли, им не надо было дожидаться, пока пройдут действие анестетика и онемение, и не испытывали почти никакого послеоперационного дискомфорта.

Слайд 2

Что такое лазер?

Ла́зер (усиление света посредством вынужденного излучения) Лазер - источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул Лазер - источник света. По сравнению с другими источниками света лазер обладает рядом уникальных свойств, связанных с когерентностью и высокой направленностью его излучения

Слайд 3

Создание лазера

Создание Лазера (1960) и несколько ранее мазера(1955) послужило основой развития нового направления в физике и технике, называется квантовой электроникой. В 1964г. Советским физикам Н. Г. Басову, А. М. Прохорову и Американскому физику Ч. Таунсу за работы в области квантовой электроники присуждена Нобелевская премия по физике. Тем временем в лаборатории Николая Геннадьевича Басова разрабатываются мощные лазеры на кристаллах рубина и неодимовом стекле, создается мощный фотодиссоционный йодный лазер наносекундных импульсов. В 1968 году в лаборатории были получены первые нейтроны при лазерном облучении мишеней из дейтерированного лития. Результаты экспериментов послужили мощным стимулом для дальнейшего развития работ по лазерному термоядерному синтезу.

Слайд 4

Николай Геннадьевич Басов Александр Михайлович Прохоров

Слайд 5

Устройство лазера

Устройство лазера На схеме обозначены: 1 - активная среда; 2 - энергия накачки лазера; 3 - непрозрачное зеркало; 4 - полупрозрачное зеркало; 5 - лазерный луч. Все лазеры состоят из трёх основных частей: активной (рабочей) среды; системы накачки (источник энергии); оптического резонатора (может отсутствовать, если лазер работает в режиме усилителя). Каждая из них обеспечивает для работы лазера выполнение своих определённых функций.

Слайд 6

Лазер – это устройство, которое вырабатывает лазерное излучение. Лазерное излучение имеет большую мощность, чем обычный свет, потому что все его лучи имеют одинаковую длину волны и движутся вместе. Благодаря этому лазерные лучи можно сфокусировать, превратив с высокой точностью в узкий пучок. (Лучи обычного света состоят из нескольких длин волн, которые, выходя из источника света, распространяются во всех направлениях.) Лазерный луч можно сфокусировать на такой маленькой площади, что он будет способен сделать 200 отверстий на булавочной головке!

Слайд 7

Виды лазеров

Лазеры бывают: Газовые (аргоновые, гелий-неоновые, на монооксиде углерода и углекислом газе, эксимерные). Твердотельные (александритовые, рубиновые, кристаллические с иттербиевым легированием, алюмо-иттриевые, титан-сапфировые, микрочиповые). Полупроводниковые лазерные диоды (в указках, принтерах, CD/DVD).

Слайд 8

Применение лазеров

  • Слайд 9

    С помощью лазерных технологий стала возможна сварка, резка, сверление, закалка материалов без появления в них внутреннего напряжения, чего невозможно было достигнуть при механической обработке. Точность такой обработки достигает буквально микрометра, и лазеру без разницы, что именно он обрабатывает – металл или алмаз. В микроэлектронике предпочтительней не пайка соединений, а сварка, и луч лазера отлично справляется со своей задачей. Также существует лазерное охлаждение и намагничивание. Излучатель еще очень успешно применяют в термоядерном синтезе.

    Слайд 10

    Сегодня лазер незаменим также и в медицине. Он применяется в хирургии, офтальмологии, гинекологии, онкологии и косметической хирургии. Например, при операциях на глазном яблоке лазер способен приваривать отслоившуюся сетчатку не травмируя сам глаз. Лазер может выжигать как доброкачественные, так и злокачественные опухоли. Также его успешно используют в стоматологии для отбеливания зубов и бескровной имплантации. И очень радует перспектива использования луча для остановки кровотечений у людей с малой свертываемостью крови. Астрономия с помощью лазера также смогла вынести на совершенно иной уровень качество своих исследований. Так, например, с помощью рубиновых лазеров ученые смогли более точно определять расстояние от Земли до других космических тел. Точность картографирования поверхности планет теперь составляет до 1,5 м. А с помощью полупроводниковых лазеров осуществляется связь со спутниками.

    Слайд 11

    Слайд 12

    Незаменим лазер при геодезических измерениях, а также при регистрации сейсмической активности коры Земли. В геофизике с высокой точностью определяют высоту облаков, исследуют такие явления, как турбулентность и инверсионные следыСлайд 16

    Лазеры окружают нас и в повседневной жизни. С их помощью мы прослушиваем компакт-диски, записываем данные, распечатываем информацию на принтерах. Кассиры в супермаркетах лазером считывают штрих-коды с продукции. С его помощью добавляют субтитры на экран, с лазерными указками преподаватели объясняют материал. А молодежь вечером восхищается на дискотеке феерическими лазерными шоу.

    Посмотреть все слайды

    Слайд 2

    Слово ЛАЗЕР - это акроним, который расшифровывается, как Усиление Света путем Вынужденной Эмиссии Излучения ((L) light (A) amplification (S) stimulatedbythe (E) emissionof (R) radiation) и описывает способ генерации света. Все лазеры являются оптическими усилителями, которые работают путем накачивания (возбуждения) активной среды, помещенной между двумя зеркалами, одно из которых пропускает часть излучения. Активная среда - это совокупность специально подобранных атомов, молекул или ионов, которые могут быть в газообразном, жидком или твердом состоянии и которые при возбуждении путем нагнетающего действия будут генерировать лазерное излучение, т.е. испускать излучение в виде световых волн (называемых фотонами). Накачка жидкости и твердых тел достигается путем облучения их светом импульсной лампы, а газы накачиваются при помощи электрического разряда. Что такое лазер?

    Слайд 3

    Свойства лазерного света Световой луч коллимированный, что означает, что он перемещается в одном направлении с очень маленьким расхождением даже на очень большие расстояния Лазерный свет - монохромный, состоящий из одного цвета или узкого диапазона цветов. У обычного света очень широкий диапазон длин волн или цветов Лазерный свет - когерентный, что означает, что все световые волны перемещаются в фазе вместе как во времени, так и в пространстве Лазер - это устройство, которое создает и усиливает узкий, интенсивный луч когерентного света

    Слайд 4

    Сегодня лазеры широко применяются в медицине, производстве, строительной промышленности, геодезии, бытовой электронике, научной аппаратуре и военных системах. Сегодня используются буквально биллионы лазеров. Они являются составляющей таких привычных устройств, как сканеры штрих-кода, используемые в супермаркетах, сканеры, лазерные принтеры и проигрыватели компакт-дисков. Применение лазеров

    Слайд 5

    После изобретения Майманом в 1960 году рубинового лазера, было предложено множество его потенциальных применений. В области медицины возможности лазеров стали развиваться быстрее после 1964 года, когда был изобретен лазер на диоксиде углерода, который вскоре дал хирургам возможность выполнять очень сложные операции, используя фотоны вместо скальпеля, для проведения операций. Лазерный свет может проникать внутрь тела, выполняя операции, что несколько лет назад было почти невозможно выполнить, при минимальном риске или дискомфорте для пациента. Более короткие (зеленые) лазеры используются для "сварки" отслоившейся сетчатки, и используются для растяжения молекул белка для измерения их силы и т.д. Применение лазеров в медицине

    Слайд 6

    В 1964 году была предположена возможность применения рубинового лазера для лечения кариеса, что привлекло внимание всего мира. В 1967 году при попытке удалить кариес и подготовить полость при помощи рубинового лазера, но не смог избежать повреждения пульпы зуба, несмотря на хорошие результаты, полученные на извлеченных зубах. Позднее, подобные базовые исследования с лазером CO2 также столкнулись с этой проблемой. Чтобы минимизировать накопление тепла, вместо непрерывного излучения использовались импульсные лазеры. Дальнейшие исследования продемонстрировали, что лазер может давать небольшой местный анестезирующий эффект. Дальнейшие разработки привели к созданию лазера, который просверливает эмаль и дентин полностью. При этом лазер сохраняет больше здоровой ткани зуба. С сегодняшними лазерами практически нет нежелательного нагревания, нет шума и вибрации. Покидая стоматологическое кресло, большинство пациентов не ощущали боли, им не надо было дожидаться, пока пройдут действие анестетика и онемение, и не испытывали почти никакого послеоперационного дискомфорта. Лазеры точны и практически безболезненны и могут изменить Ваше мнение о посещении стоматолога. Они могут изменить все. Применение лазеров в стоматологии

    Слайд 7

    Лазеры - это значительный прорыв в стоматологии, как для десен и других мягких тканей, так и для самих зубов. В наши дни значительное количество лазерных технологий и методов лечения получили широкое применение. Сегодня лазеры используются в следующих областях стоматологии: Профилактика Пародонтология Эстетическая стоматология Эндодонтия Хирургия Имплантодонтия Протезирование Применение лазеров в стоматологии

    Слайд 8

    В настоящее время лазеры широко используются в деревообрабатывающей промышленности, причем за последние годы область их распространения значительно расширилась. Применение лазеров облегчает позиционирование заготовок (видеоролик), совмещение наружных рисунков двух заготовок, минимизацию образующихся отходов, монтаж сложных конструкционных элементов зданий и сооружений. Лазеры, применяемые в деревообработке, могут воспроизводить линию, пересечение линий (обозначать центр) или 2-х или 3-х мерное изображение (проекторы). Лазерные системы в деревообработке

    Слайд 9

    в качестве логических элементов для ввода и считывания из запоминающих устройств в вычислительных машинах лазерный принтер оптическая передача информации Лазеры в вычислительной технике

    Слайд 10

    Лазер также можно использовать для бесконтактных измерений геометрических размеров (зазор, длина, ширина, толщина, высота, глубина, диаметр). С помощью лазера также можно получать комплексные измерения: отклонение от вертикальности; величину плоскостности поверхности; точность профилей; Существует возможность получать производные величины, такие, как прогиб и выпуклость. Лазерные измерительные системы позволяют в автоматическом режиме контролировать параметры продукции и немедленно изменять параметры производственной линии, если происходит, какое либо отклонение. Продукт в этой области эксклюзивен, поскольку обладает следующими свойствами: Высокоточен Позволяет контролировать качество и характеристики геометрически сложных деталей Не повреждает и не разрушает поверхность продукт Работает в любых условиях на любых поверхностях Легко интегрируется в уже действующую производственную линию Лазеры в измерениях

    Слайд 11

    Классификация лазеров Лазеры класса IНе представляют опасности при непрерывном наблюдении или разработаны так, чтобы предотвратить попадание человека под лазерное излучение (например, лазерные принтеры) Видимые лазеры класса 2 (от 400 до 700 нм)Лазеры, излучающие видимый свет, который из-за естественной человеческой отрицательной реакции обычно не представляют опасности, но могут представлять, если смотреть прямо на лазерный свет в течение продолжительного времени. Класс 3aЛазеры, которые обычно не причиняют вред при кратковременном попадании в глаза, но могут представлять опасность при наблюдении с использованием собирающей оптики (волоконно-оптическая лупа или телескоп) Класс 3bЛазеры, которые представляют опасность для глаз и кожи при прямом попадании лазерного света. Лазеры класса 3b не генерируют опасное диффузное отражение, за исключением попадания с близкого расстояния Лазеры класса 4Лазеры, которые представляют опасность для глаз в результате прямого, зеркального и диффузионного отражений. Кроме того, такие лазеры могут быть пожароопасными и вызывать ожоги на коже.

    Слайд 12

    ЗАЩИТА ГЛАЗ - Все, кто находится в операционной, должны надевать специальные защитные очки. Свет, выходящий из лазера, может серьезно повредить роговицу и сетчатку незащищенных глаз. Очки должны иметь боковую защиту и надеваться поверх обычных очков. Лазерные защитные очки должны быть доступны и надеваться всем персоналом, находящимся внутри Номинальной опасной зоны лазеров класса 3 b и класса 4, где может произойти облучение свыше Максимально разрешенного. Коэффициент поглощения оптической плотности лазерных защитных очков для каждой длины волны лазера определяется LaserSafetyOfficer (LSO). На всех лазерных защитных очках четко отмечается оптическая плотность и длина волны, для защиты от которых предназначены очки. Лазерные защитные очки перед использованием должны проверяться на повреждения. ОТРАЖЕНИЕ - Лазерный свет легко отражается и нужно внимательно следить за тем, чтобы луч не направлялся на полированные поверхности. ЭЛЕКТРИЧЕСКАЯ ОПАСНОСТЬ - Внутренние части лазера находятся под высоким напряжением и излучают невидимым лазерные лучи без всякой экранировки. Только специалисты, обученные электрической и лазерной безопасности, авторизированны проводить внутреннее обслуживание. Меры безопасности

    Слайд 13

    – вид оружия направленной энергии, основанный на использовании электромагнитного излучения высокоэнергетических лазеров. Поражающий эффект ЛО определяется в основном термомеханическим и ударно – импульсным воздействием лазерного луча на цель. В зависимости от плотности потока лазерного излучения эти воздействия могут привести к временному ослеплению человека или к разрушению корпуса ракеты, самолета и др. В последнем случае в результате теплового воздействия лазерного луча происходит расплавление или испарение оболочки поражаемого объекта. При достаточно большой плотности энергии в импульсном режиме наряду с тепловым осуществляется ударное воздействие, обусловленное возникновением плазмы. В настоящее время в США продолжаются работы по созданию авиационного комплекса лазерного оружия. Вначале предполагается отработать демонстрационный образец для транспортного самолета Боинг‑747 и после завершения предварительных исследований перейти в 2004г. к этапу полномасштабной разработки. По состоянию на середину 90‑х годов наиболее отработанным считалось тактическое лазерное оружие, обеспечивающее поражение оптико‑электронных средств и органов зрения человека. Лазерное оружие